实用的数学教学计划锦集6篇
日子如同白驹过隙,我们的工作又进入新的阶段,为了今后更好的工作发展,让我们一起来学习写计划吧。相信许多人会觉得计划很难写?下面是小编为大家收集的数学教学计划6篇,希望能够帮助到大家。
数学教学计划 篇1一、学情分析
本班学生共有47人。根据中年级教材内容和学生的年龄特点,学生对知识的掌握仍存在一些不利因素,有少部分学生,由于知识脱节,单元知识能过关,但综合能力较差,对于概念理论知识理解过于肤浅,对知识运用也欠灵活,有一部分学生学习态度比较浮躁,计算能力较差,还需进一步提高,解决问题分析能力还可以,个别学生仍需继续辅导。从学生习惯方面看,有一部分学生没有养成良好的学习习惯。做题马虎,丢三落四,抄错数,不用直尺等许多学习习惯有待改善;还有个别学生缺乏自信心.本学期的教学工作我将以新课程标准为指导,以学生为主体,以自主、合作、探究为主线,培养学生认真审题的习惯、书写规范化的习惯、检查验算的习惯,要结合知识的复习整理,逐步培养学生对学过的知识进行及时总结的习惯。
二、教材分析
本册教材内容包括:小数的意义与性质,小数的加法和减法,四则运算,运算定律与简便计算,三角形,位置与方向,折线统计图,数学广角和数学综合运用活动等。
本册教材主要特点:总体上看,本册教材仍然具有内容丰富、关注学生的经验与体验、体现知识的形成过程、鼓励算 ……此处隐藏8930个字……}.
4.设集合A={x|2x+1<3},B={x|-3
A.{x|-3
C.{x|x>-3} D.{x|x<1}
解析:集合A={x|2x+1<3}={x|x<1},
观察或由数轴得A∩B={x|-3
答案:A
例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B?A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.
∵A∩B=B,∴B?A.
∴B= 或B≠ .
当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a
当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0}?A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有-4+0=-2(a+1),-4×0=a2-1.
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.