《相似三角形性质》教学反思
《相似三角形性质》教学反思1本节课本我从复习相似三角形的判定方法入手,由判定与性质的互逆得到:相似三角形对应角相等,对应边成比例。再由全等三角形中对应的特殊线段的比为1,引出思考:相似三角形对应的特殊线段的比与相似比有什么关系呢?
学生带着疑问,进行分组测量探索,汇报交流。老师引导学生共同证明:一组相似三角形中对应角平分线的比等于相似比,再类比到对应高,对应中线的比也等于相似比。接着对四种“比”间的相互关系加以练习,突出“比”的“同一性”。本节课主要利用相似三角形中的变量与不变量,揭示一组相似三角形中对应边的长度、对应特殊线段的长度都发生变化,但其对应角不变,对应特殊线段的比也不变。以“不变应多变”,在“运动变化”中体会“守恒”!使学生把握数学的本质——用 “守恒来刻画变化”。最后,“温故而知新”(以前利用平行线的性质可以得出成比例线段;现在又多了一种证明成比例线段的方法),点出“相似三角形的性质定理1”的作用。为了给下节课作好铺垫, “一组相似三角形对应周长的比、面积比与相似比有关吗?如果有,是怎样的关系呢?”从而把学生的学习兴趣延伸到课下,为下节教学活动的开展埋下伏笔!
这节课基本上做到了
㈠目标定位准确,较好地完成教学任务。目标是教学的导向轮、风向标。这节课目标明确,围绕教学任务逐层深入,提起学生思维兴趣,师生配合默契。
……此处隐藏1770个字……面积比,我让他们又讨论、探究,最后得出了结论。整个课堂气氛活跃。
归纳起来,这一节课从始到终,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等。同学们讨论非常激烈,充分体现本节课堂教学取得了明显的效果。此外,教师的肯定、表扬与鼓励,会使学生始终保持高昂的学习热情,感受在探究性学习,创造性劳动中获得成功的乐趣。
《相似三角形性质》教学反思5我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;
可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。
这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯